
Developing in-house software

Why I did it & you should too

Camille Seaberry

DataHaven

 Follow along: ct-data-haven.github.io/datadev

2013 2016 2019: the takeover

DataHaven's Community Index

2 / 20

Installing packages is easy

install_github("camille�s/camiller")
install_github("CT-Data-Haven/cwi")

Spreadsheet sprawl

3 / 20

Unhappy Mother's Day, but a new
appreciation of behind-the-scenes
information

Shifting my thinking: toward sustainable &
reproducible work

4 / 20

I moved 300 miles away to Baltimore

Shifting my thinking: toward sustainable &
reproducible work

5 / 20

What's a library?

library(tidyverse) # sets up LOTS of functions, how I start my mornings
library(tidycensus) # fetches data from Census API
library(camiller) # first in�house library
library(cwi) # second in�house library
library(showtext) # use nice fonts in plots
library(sf) # work with geospatial data & make maps
library(patchwork) # layout plots together
library(lubridate) # parse dates

6 / 20

Functions! If only...
leave_the_house �� function(date = today(), biking = TRUE, working = TRUE) {
 day_of_week �� wday(date, label = TRUE, abbr = FALSE)
 always_need �� c("keys", "phone", "wallet", "meds")
 sometimes_need �� c()
 if (biking) {
 sometimes_need �� c(sometimes_need, "helmet")
 } else {
 sometimes_need �� c(sometimes_need, "bus card")
 }
 if (working) {
 sometimes_need �� c(sometimes_need, "laptop")
 }
 need �� c(always_need, sometimes_need)

 cat(
 sprintf("Happy %s! Today you need:", day_of_week), "\n",
 paste(need, collapse = ", ")
)
}

7 / 20

Functions! If only...
leave_the_house(biking = TRUE, working = FALSE)

Happy Saturday! Today you need:
 keys, phone, wallet, meds, helmet

8 / 20

Functions: reduce repetition & clutter
Tedious and messy

Nice n clean

income �� multi_geo_acs(table = "B19013", year = 2017, us = TRUE, msa = TRUE)

income_us �� get_acs("us", table = "B19013", year = 2017)
income_state �� get_acs("state", table = "B19013", year = 2017)
income_msa �� get_acs("metropolitan statistical area/micropolitan statistical area", table
income_county �� get_acs("county", table = "B19013", state = "09", year = 2017)
income_towns �� get_acs("county subdivision", table = "B19013", state = "09", year = 2017)
income �� bind_rows(income_us, income_state, income_msa, income_county, income_towns)

get rid of those extra tables
rm(income_us, income_state, income_msa, income_county, income_towns)

9 / 20

Functions: I swear I did this last week!

10 / 20

Functions: make it scale

11 / 20

geo_level_plot(tenure,
 value = homeownership,
 hilite = "mediumpurple1",
 title = "Homeownership rates, 2017")

Functions: encourage good habits

12 / 20

Clean, uniform charts

13 / 20

Reusable datasets & references
How many times can I generate, save, and forget about the same lookup tables and
shape�les?

14 / 20

head(village2town, n = 5)

cdp_geoid place town_geoid town

0902550 Baltic 0901171670 Sprague

0902690 Bantam 0900543370 Litch�eld

0904945 Bethlehem
Village

0900504930 Bethlehem

0906050 Blue Hills 0900305910 Bloom�eld

0907345 Branford
Center

0900907310 Branford

plot(new_haven_sf["geometry"])

Reusable datasets & references
Much better: move those lookup tables & shape�les to the R package

15 / 20

Reusable datasets & references
Avoid the suffering of �nding table numbers on FactFinder

16 / 20

Reusable datasets & references
Avoid the suffering of �nding table numbers on FactFinder

basic_table_nums[["pov_age"]]

�� [1] "B17024"

get_acs("county", table = basic_table_nums[["pov_age"]], state = "09")

17 / 20

Testing, debugging, documenting
What doesn't kill you makes you stronger

Does this function do what I think it does?
Are these the most important tasks for me & my coworkers?
What might break by this time next month?
How will this scale & remain relevant?
What am I not thinking of yet?

Testing the qwi_industry function in cwi:

test_that("handles years not in API", {
 expect_warning(qwi_industry(1990:2000, industries = "23"), "earlier years are being removed")
 expect_error(qwi_industry(1990:1994, industries = "23"), "only available")
 # should only return 1996-2000
 expect_equal(nrow(suppressWarnings(qwi_industry(1991:2000, industries = "23", annual = T))), 5)
})

18 / 20

My code is amazing. Now how do I make sure
someone uses it?
If I can't explain a feature, do I really need it?
What might someone else do wrong?
How can I avoid "What does this do?" emails
and texts?

Docs website with pkgdown

Testing, debugging, documenting
What doesn't kill you makes you stronger

19 / 20

tl;dr

Package development: lots of work upfront, totally worth it

 DataHaven: ctdatahaven.org

 Our side projects blog: ct-data-haven.github.io

 DataHaven on GitHub: github.com/CT-Data-Haven

 These very slides! ct-data-haven.github.io/datadev

20 / 20

http://ctdatahaven.org/
http://ct-data-haven.github.io/
https://github.com/CT-Data-Haven
https://ct-data-haven.github.io/datadev

